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ELEMENTAL-FILTER DESIGN CONSIDERATIONS

1. Introduction

In Office Note 165, Shuman noted that the G-filter (a seven-point

operator) used in the LFM postprocessor can be simulated by using three

3-point symmetric smoothing elements of the type he developed in his 1957

Monthly Weather Review paper on smoothing and filtering in NWP.

In this note, I will show how the relation given by Shuman for the G-

filter relates to the design criteria for that filter, developed in Office

Note 57. I then show how the progression from the five-point operator,

called the H-filter by Shuman, to the G-filter can be both extended and

modified. On the way, we encounter complex roots for a: filter response

function which leads to an application of Shuman's method for avoiding

complex weights through the use of antisymmetric three-point elemental

operators.

Finally, I'll sketch a procedure for the calculation of the appropriate

three-point symmetric or antisymmetric elements that satisfy a large set

of conditions on the filter response function.

2. Relationship Between Expanded and Elemental Filters

Let dj be a set of real numbers forming a data set on an equispaced

array of points with indices j, Let wm denote a set of real numbers, and

let yj be a set of real numbers formed from dj and wm by the relationship

(1),
M

yj = wo dj + dm) (1)
:j Wo di + X wm(dj+m + dj-m).

J~~~~~~~~~-
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Provided that
M

wo + 2wm 1 (2)

the linear transformation (1) may be called a filter. The properties of the

transformation are readily interpreted if we select dj and yj to be

represented by Fourier series. In view of (2) and the symmetry of (1), one

may treat a single element of the Fourier series representations of yi and

dj,

dj = D cos kjh

(3)

yj= Y cos kjh,

in which h is the spacing between the data points and k is the wave number.

One may define
M

R(cos kh) E w o + X 
2Wm cos(mkh) (4)

and obtain from (3) and (1) the relation

Y
= R(cos kh) (5)

R is called the filter response function.

It is convenient to define

= cos kh (6)

and to use the recurrence relationship,

cos mkh = [2 cos(m-l)kh]C - [cos(m-2)kh] (7)

to rewrite (4) as
M

R(C) = X Cm m (8)

m=--o
The coefficients cm are real valued and may be calculated from the w's.

*O0
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The variable C is continuous; for our purposes its significant range is

- 1 < C < + 1. The value, C = - 1, is taken on when the function d has wave

length 2h; the value, C = 0, is taken on when d has wave length 4h; the

value C -- + 1 when the wave length becomes very large.

From (8), it is apparent that one may generally write,

R(C) = c[(C-r1)(C-r2)... (C-rM)] (9)

In view of (2), one has R(+l) = 1 and

c = [(l-r ) (l-r2)... (l-rM)] (10)

In view of the factored form (9), one is led to consider representing

the filter (1) by a series of elemental filters, each of which produces

one of the factors in (1). Following Shuman's 1957 paper, one may write._ the response of a three-point symmetric elemental filter as

~~~~~~~~~~~-1
P(C) = V(C _( v_)) (11)

where v is twice the weight assigned to the end points of the elemental

filter. Comparison of (11) and (9) shows that to each root r there

corresponds a weight v,

v = (l-r)- 1 (12)

One notes, however, that the roots r may be complex numbers; thus,

the v's may also be complex.

Generally, the complex roots occur in conjugate pairs because the

coefficients cm are real. To avoid dealing with complex numbers, Shuman

suggests (Office Note 125) the following method:



-4-

Let th

weights v,v

with A and

Define

and

.e complex conjugate roots be r,r* and the complex conjugate

v* be

v = A+ i B

V* = A - i B

B real numbers.

D - [(1-2A)2 + 4B2]½

b = 1-(l-D)

l+D 1-2A D
a = 4 + 

i+D 1-2A + 8] 2
c- 4 8 8

Note that a + b + c = l,i-and that a, b, and c are real valued.

With these values of a, b, and c, Shuman shows that the filters

Fj = a fj-1 + b fj + c fj+l

j c Fj-1 + b F. + aFj+l

have the response function,

S () = Fj =
f.
J

1

(1-r) (1-r*)-

(13)

(14)

(15)

(16)

(17)

(18)

(19)

3. Filter Design Criteria

Since the action of a filter transformation can be expressed by a

response function in polynomial form, one may set design criteria to be

satisfied by the response function and fix the coefficients cm in equation (8).

Once the coefficients are fixed, the polynomial's roots may be determined.
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From the roots r one obtains the weights v from equation (12). When

complex roots occur, one may use the antisymmetric elemental filters.

Through the use of 14 through 17, one determines the real valued weights

of the antisymmetric elemental filters.

Let's now consider the filters H and G. The H filter satisfies the

constraints,

R (+1) = 1

R'(+l) = 0 (20)

R (-1) = 0

Its response function may be written

RH(C = - ¼(C+l) (C-3) (21)

and its weights are v1 =½, v2 = - ½.

The G-filter was designed to add suppression to the high wave number

response by appending the constraint

.R'(-1) = 0 (22)

to those (20) of the H filter's design. One obtains the filter response

function

RG(C) = - ¼(C+1)2 (C-2) (23)

and the weights ¥1
= ' v2 v3= - 1, as pointed out by Shuman.

Further suppression of the high wave numbers may be obtained by

requiring additional derivatives of R to vanish at C = - 1. The first

m-l derivatives of R at C = - 1 will be set to zero, while the other

constraints of the H filter are still satisfied, by a filter with the
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response function

R(~) = I m [2 (m+l1m m - m+2 (24)
m~~~

with the weights, v1 = v2 Vm = v m -
2' = m ' m+l

2

Going back to the H filter, one might wish to improve its fidelity for

long waves. Suppose for example one desired R'(+l) = 0 in addition to

the constraints (20). We use the polynomial

R(C) = c0 + clC + c2 2 + c3 3 (25)

and the constraints

R(+I) = 1 = c0 + cl + c2 + c3

R'(+l) =0 = c1 + 2c2 + 3c3 (26)

(26)
R"(+l) 0= = 2c + 6c

2 3

R(-l) = 0 = c0 - c1 + c2 c3

Solving (26) one obtains

7
c =-

8

3
Cl 8

3

C =

2 8

1

3 8

So the polynomial becomes

R() = (C3 32 + 3 + 7) (27)

One notes that C = - 1 is a root of (27), so

R(C) = ¥(+i)(2 _ 4C + 7) (28)
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or after factoring the quadratic,

R(~) = -(%+1)(~ - 2 + i/-)(% - 2 - i/). (29)

Thus we encounter complex conjugate roots. The complex conjugate weights

are

1 /3
v:= - ( + i )

(30)
1 73

v* = - ( - i j

With these weights, one may approximate the weights of the anti-

symmetric 3-point elemental filters. Approximation is necessary because

of the irrational number /3 appearing in (30). One gets

a = 1.227

b = - .366 (31)

c = .139

The virtue of this filter is that it doesn't yield amplification

anywhere in the range - 1 < C < + 1. It differs in this respect from the

filter designed by Shuman, which does admit of very small amplification.

The. filter response at 4igrid intervals (C=0) is 0.875 compared with about

0.95 for the filter discussed by Shuman; at 5 grid intervals, the response

is about .96 as contrasted with unity.

:O



4. Concluding Remarks

I was unable to generalize the form of the filter response function

when one requires higher-order derivatives of R to vanish at C = +1 in

addition to the other conditions of the H-filter.

The elimination of any need to do complex arithmetic when using

3-point elemental filters opens the way for a careful analysis of the

end conditions influence when elemental filters are used recursively.

I have coded a two-dimensional application of the filter whose

response function is given in (24). The code is attached. When

KINDEX = 3, this is a 9 x 9 operator that I will call the 'N-filter.'

_e

e ~~~~~~~.



(S.EP'? 76) OS/360 FORTRAN H EXTENPED PLUJS

- OPTIONS: I\JOD[ECKgNOIIST,OPTIPIZEr21)tNOeMAP,STZE(MAX),tNOIL¶NOXREF,NnTERMLC(6

Ni EFFECT: NrllAME(MAIN) NOOPTIMIZE LINIECOUNT(6oF) SIZF(MAX) AIJTODB]LONIF)SOURCE EfBCDIC NOLIST PNO[!ECI OEBJECT NOMAP NOFORMAT GOSTI'T" POXEFF A,

FUNCTIONS INLTINE ARE: NONE

02 SUBROUTINE FILTER( Fi h, N9 M ;KINDFEX)
03 DIMENSION F(N,9 P), If(r,!, q)

C TIIIS SlUBROUTINE PERFORMS A 2 0IMENSITONAL FILTERIrlq OF THE
C FIELD FIWITHf DIMENSITONS M*N, THE FILTER USE D Er3F ,!DS 'C UPON I<INDEX
C KINDEX=i IS THE 1-1 FILTER
C KINDEX = 2 IS THE G FILTER
C lhKINDEX = 3 IS THE N FILTER
C FOR PREFERENCE (CF. GEFPRITY OFFICE NOTE 16 9 1978}

C WN IS A WORK FIELD WITH DIMENSIONS N*M
~C THE SMOOTHED FIElD OV/ERWRITES THE TINPJT FIELD F

04 NN = N-1
05 MllM = M1,.
06 DO 10 K=1iKINDEX
07 DO 20 d=1tM
08 DO 30 I=2t,,N09 W(IJ) - .25*(F(I-!,J)+F(T+lI ) + o5 * F(I,J)10 30 CONTINUE
11 W(1'J) = F(iJ)
12 W(N,J) F(NJ)
13 20 CONTINUE
14 DO 40 I=19,N
15 DO 50 J=2,MMAft16 F ( I t J) = ,2 5 W (I 9J+ I- + J 1 )). + ,5 * I( I, J
17 OQ50 CONTItNUJE

N 8 F(I,1) : WJ(l,1}
I9 F(IM.) = 1flgIM)

20 40 CONTINUE
21 10 CONTINUE

C
22 XNIUD - ,5*FLOAT(KITNJDEx)
23 XEND .5*XNU
24 XPIID 1. -2.*XEND
25 DO 60 J=iq*r
26 DO 70 I=2,NN
27 W(IoJ) = XEND*(F(rT+9,J)+F(I-1,J)) + XMID:T*F(TsJ)28 70 CONTINUE
29 W(19,J) = F(1,J)
30 W(NJ) = F(NJ)
31 60 CONTINUJE
32 . DO 80 I=1tN
33 DO 90 J:2,9rM
13q F(ItJ) = XEND*(I.(IJ+1)+WI.(TJ-1)) +Xr'qID*nw(Tt.J)35 90 CONTINUE
36 F(I!1) W( I,1)
37 F(I,M) --- W(IM)
38 80 CONTINUE
39 RETURN
40O END \ '

IN EFFECT*NAME( I AIN) NOOPTIMPIZF 1 NTECOU T(60 ) SIZE(MAX) /AUTO[1RL (I NN FI


